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Blind Spot in Human-centered AI Evaluation

WILLEM VAN DER MADEN & JICHEN ZHU, IT University Copenhagen, Denmark

Large Language Models (LLMs) are increasingly being used in design practices—such as persona and scenario development, critical
reflection, and prototyping—due to their ability to generate insights and support creative processes. However, while the integration
of LLMs into human-centered design is expanding, a critical blind spot remains: there is a lack of methodologies for developing
evaluation criteria that are truly human-centered and context-sensitive. Existing calls for improved LLM evaluation often focus on the
need for better criteria, but they fall short of providing systematic support for creating these criteria based on real user experiences
and needs. This position paper argues that to fill this gap, we should draw inspiration from established practices in human-centered
design, which offers rich methods for eliciting criteria based on real-world user experiences. By exploring these avenues, we can
begin to reframe AI evaluation through a design-oriented lens, guiding the development of LLMs in ways that are more aligned with
human-centered design principles. Before AI can be integrated in design, design should be integrated in AI.
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1 INTRODUCTION

Generative artificial intelligence systems (GenAI) are rapidly becoming part of the designer’s toolkit. From generating
personas [13] and scenarios [10] to supporting critical reflection [14] and prototyping [9], these AI systems are reshaping
howwe approach design challenges. Among these, Large Language Models (LLMs) are particularly influential, promising
to enhance creativity, streamline processes, and foster innovative design solutions. However, this potential depends on
how well these tools align with the specific needs of designers and end-users. Current evaluation methods, which often
rely on generalized metrics like accuracy, fail to capture the nuanced and context-specific interactions in real-world
design settings [7, 15, 16, 18]. To fully leverage LLMs for human-centered design, we must evaluate them with equally
human-centered assessments. Without such methods, we risk deploying AI tools that may not truly serve their intended
purpose, despite their technical sophistication. The current situation is akin to using a new design tool without any
means to assess its impact on the design process or outcomes.

While there is growing recognition of the need for more human-centered LLM evaluation, existing research efforts
often lack systematic frameworks for developing criteria grounded in real user experiences within design contexts—a
challenge often referred to as the sociotechnical gap [8]. The unique properties of LLMs complicate the creation of
such criteria more than traditional technologies [11]. Most current evaluation methods still focus on metrics like
accuracy, which are suited for simpler, task-oriented models but fall short in capturing the nuanced ways designers and
users interact with LLMs during creative processes [5, 17]. For instance, assessing an LLM’s effectiveness in persona
development is fundamentally different from evaluating its utility in narrative content generation. Therefore, there is
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an urgent need for evaluation approaches that can accommodate the varied applications of LLMs in real-world design
scenarios.

This misalignment between evaluation criteria and real-world design applications is a significant bottleneck in
developing effective AI tools for design. The quality of these criteria directly impacts the iterative training and refinement
of LLMs. Inadequate evaluation metrics lead to poorly developed models, creating a cycle of suboptimal AI performance
in design contexts. To bridge this gap, this paper proposes drawing from established HCD practices, which offer robust
methods for eliciting criteria based on real-world user experiences. By leveraging these practices, we can reframe
AI evaluation through a design-oriented lens, aligning the development of LLMs more closely with human-centered
design principles. In essence, this paper argues that before we can effectively integrate AI into design, we must first
integrate design principles into AI development. The structure of this paper is as follows: we will begin by addressing
the challenges in current LLM evaluation practices, highlighting recent research and the gap in criteria development.
Next, I will propose an approach inspired by scale development methodologies to address these challenges. Finally, we
will discuss how HCD methods can adapt this approach to the specific needs of LLM evaluation in design contexts. To
fully understand the need for this human-centered approach, we must first examine the challenges inherent in current
LLM evaluation practices.

2 CHALLENGES IN CURRENT HUMAN-CENTERED EVALUATION PRACTICES

As LLMs are increasingly integrated into daily life, their impacts often emerge from complex interactions. Due to this
entanglement, it is difficult to predict capabilities by evaluating them in isolation. The rapid advancement of LLMs
creates a moving target for evaluators, challenging their ability to develop reliable assessments that accurately capture
real-world performance, while trying to stay in tune with emerging applications[8, 16]. Moreover, the context-sensitivity
of LLM outputs and their ability to engage in a wide range of open-ended interactions render traditional, task-specific
evaluation metrics inadequate[11].

These characteristics of LLMs have contributed to what researchers term an ”evaluation crisis" in AI [18]. Current
techno-centric evaluation methods, which rely on generic benchmarks and automated assessments, fall short in
capturing the real-world complexity of LLM use[11]. While current work is ongoing to develop more human-centered
evaluation processes [e.g., 3, 7, 12], a clear gap remains: the current state-of-the-art is focused developing methods that
better align with real-world scenarios and user intents; however, the criteria and metrics used to evaluate these more
granular scenarios remain superficial (e.g., Enjoyment: did you like this interaction) and lacking rigor and scientific
grounding (e.g., developed without proper investigation/whatever).

Taking this gap together with calls from recent literature to foster transparency [6], standardization [2], and construct
validation [1], we may look to established methods from psychology to support the development of criteria and metrics
for human-centered AI evaluation. These challenges highlight the need for a more systematic approach to developing
evaluation criteria that can capture the nuanced interactions between users and LLMs. To address this, we can draw
inspiration from established practices in scale development, while adapting them to the unique demands of AI evaluation.

3 CRITERIA ELICITATION AND OPERATIONALIZATION

Scale development in psychology typically involves several key steps: construct definition, item generation, content
validation, scale administration, item analysis, and reliability and validity assessment [4]. Each step ensures the resulting
scale accurately measures the intended construct. The item generation phase is crucial and involves eliciting and
conceptualizing experiences within a specific context. For instance, when developing a scale for work-related stress,
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researchers might conduct interviews with employees to understand their experiences of stress in the workplace. This
process helps identify relevant dimensions of the construct. Following elicitation, researchers operationalize these
criteria into observable metrics. This step translates conceptual understanding into measurable items, allowing for
quantitative assessment. For example, a work stress itemmight ask respondents to rate how often they feel overwhelmed
by their workload on a Likert-scale.

However, the dynamic nature of LLMs presents unique challenges to this process. Traditional scale development is
relatively static, with iterations occurring between versions but not after finalization. This approach does not align with
the emergent nature of LLMs, whose capabilities can change rapidly and unpredictably. Moreover, scales typically require
contextual consistency, which is difficult to achieve with LLMs due to their high context-dependency and versatility
across different applications. To address the unique characteristics of LLMs, Liao & Xiao [8], propose learning from
HCI evaluation methods as this field has grappled with similar challenges in assessing complex technologies. HCI offers
various methods (e.g., field studies) for understanding human-computer interactions by examining how users experience
them, and then converts these insights into quantifiable standards and measurements. Next, we will discuss a subset
of HCI methods that we often see in human-centered design (HCD) practices. Namely, HCD is uniquely positioned
to support these two critical stages, particularly for LLMs, due to its focus on understanding user experiences and
operationalizing them into design requirements. In the next section, we will explore how HCD methods can contribute
to developing more effective, context-sensitive, and human-centered evaluation criteria for LLMs, potentially addressing
many of the challenges outlined here.

4 HCD CAN HELP

Leveraging user experiences is crucial for effectively eliciting and operationalizing evaluation criteria, as it grounds the
process in real-world contexts and allows for the detection of subtle changes and nuances over time. By understanding
how people experience interactions with LLMs, we move beyond evaluating these systems in isolation and instead
assess them in the complex, dynamic environments where they are actually used. To explore this further, we will
examine several qualitative methods commonly used in HCD and discuss how they can support the development of
more nuanced, context-sensitive evaluation criteria for LLMs in various ways. For elicitation, several HCD methods can
be employed:

• Cultural Probes: This method involves giving users kits with open-ended tasks (e.g., photo diaries, postcards) to
capture their experiences with LLMs in their natural environments. For instance, designers could document
their interactions with an LLM-powered design tool over a week, providing rich, contextual insights into the
tool’s impact on their creative process.

• Contextual Inquiry: Researchers can observe and interview users as they interact with LLMs in their typical
work environment. This method could reveal nuanced aspects of LLM use in design tasks, such as how designers
leverage LLM suggestions during ideation or how they negotiate between AI-generated and human-created
content.

• Experience Sampling Method (ESM): This technique involves prompting users to provide brief reports on their
experiences at random intervals. In the context of LLM evaluation, designers could be prompted to rate their
satisfaction with LLM outputs or describe their emotional state during LLM interactions throughout their
workday, capturing real-time, in-situ experiences.

For operationalization, HCD methods can facilitate the translation of elicited experiences into measurable criteria:
3
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• Affinity Diagramming Workshops: Collaborative sessions where stakeholders categorize and prioritize insights
from elicitation methods, helping to identify key dimensions for evaluation.

• Journey Mapping: Creating visual representations of user experiences with LLMs can highlight critical moments
that should be captured in evaluation criteria.

• Participatory Design Sessions: Involving users in crafting evaluation questions or metrics ensures that the
operationalized criteria resonate with real-world experiences.

• HCD methods also support ongoing iteration and refinement of evaluation criteria:
• Co-design Workshops: Regular sessions with users can help interpret evaluation data, uncovering new aspects

of LLM interaction that weren’t captured in earlier iterations.
• Retrospective Interviews: Periodic in-depth interviews with users about their evolving experiences with LLMs

can reveal shifts in usage patterns or expectations, informing updates to evaluation criteria.
• Community Feedback Panels: Establishing ongoing dialogue with a diverse group of LLM users allows for

continuous input on the relevance and effectiveness of evaluation criteria.

These HCD methods, when integrated into the evaluation development process, enable a more dynamic and responsive
approach to LLM assessment. They facilitate the continuous refinement of criteria in response to evolving LLM
capabilities and changing user needs, ensuring that evaluation methods remain relevant and effective over time.

5 CONCLUSIONS AND FUTUREWORK

The systematic integration of HCD methods into a scale development pipeline for AI evaluation offers multiple
advantages that address core challenges in current practices. This approach enhances the relevance and validity of
evaluations by aligning criteria with specific contexts of LLM use, ensuring more meaningful and actionable insights. It
democratizes access to sophisticated evaluation techniques, supporting practitioners and non-expert researchers across
various sectors in developing context-sensitive criteria. In short, to integrate AI into HCD practices, we must first
integrate HCD into AI evaluation practices. In conclusion, we see several key areas warrant further investigation:

(1) Methodology Refinement: Future work should focus on developing and testing specific methodologies that
combine HCD techniques with scale development processes. This could involve creating step-by-step guides or
frameworks that researchers and practitioners can follow.

(2) Cross-Domain Applicability: Research is needed to explore how this integrated approach can be adapted for
different domains beyond design, such as healthcare, education, or finance, where LLMs are increasingly being
deployed.

(3) Longitudinal Studies: Long-term studies should be conducted to assess the effectiveness of this approach in
capturing the evolving nature of LLM capabilities and user experiences over time.

(4) Ethical Considerations: Further investigation is required into how this approach can be used to develop
evaluation criteria that specifically address ethical concerns in AI, such as bias, fairness, and transparency.

(5) Scalability and Efficiency: Research should explore ways to streamline and potentially automate parts of this
process to make it more accessible and efficient for widespread adoption.

(6) Comparative Studies: Future work could compare the effectiveness of this integrated approach with traditional
evaluation methods to quantify its benefits and identify areas for improvement.

(7) Tool Development: There’s potential for developing software tools or platforms that facilitate the implemen-
tation of this integrated approach, making it easier for non-experts to apply these methods.
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